On Fourier-Toeplitz Methods for Separable Elliptic Problems
نویسندگان
چکیده
Some verv fast numerical methods have been developed in recent years for the solution of elliptic differential equations which allow for separation of variables. In this paper, a Fourier-Toeplitz method is developed as an alternative to the well-known methods of Hockney and Buneman. It is based on the fast Fourier transform and Toeplitz factorizations. The use of Toeplitz factorizations combined with the Sherman-Morrison formula is also systematically explored for linear systems of algebraic equations with band matrices of Toeplitz, or almost Toeplitz form. Finally, results of numerical experiments are described.
منابع مشابه
2 00 8 A note on grid transfer operators for multigrid methods 1
The Local Fourier analysis (LFA) is a classic tool to prove convergence theorems for multigrid methods (MGMs). In particular, we are interested in optimality that is a convergence speed independent of the size of the involved matrices. For elliptic partial differential equations (PDEs), a well known optimality result requires that the sum of the orders of the grid transfer operators is not lowe...
متن کاملA note on grid transfer operators for multigrid.dvi
The Local Fourier analysis (LFA) is a classic tool to prove convergence theorems for multigrid methods (MGMs). In particular, we are interested in optimality that is a convergence speed independent of the size of the involved matrices. For elliptic partial differential equations (PDEs), a well known optimality result requires that the sum of the orders of the grid transfer operators is not lowe...
متن کاملLocalization of the Eigenvalues of Toeplitz
This paper explores the relationship between Toeplitz and circulant matrices. Upper and lower bounds for all eigenvalues of hermitian Toeplitz matrices are given, capitalizing on the possibility of embedding a Toeplitz matrix in a circulant, and of expressing any nn Toeplitz matrix as a sum of two matrices with known eigenvalues. The bounds can be simultaneously found using a single discrete Fo...
متن کاملTensor Product Generalized ADI Methods for Elliptic Problems
We collsider IlOlving separable, second order. linear elliptic partial differential equations. If an elliptic problem is separable, then, for certain discretizations. the matrices involved in the corresponding discrete problem can be expressed in terms of tensor products of lower order matrices. In the most general case. the discrete problem can be written in the form (Al@Bz +81i&lA,2)C ==F. We...
متن کاملFourier Methods for Piecewise Hermite Bicubic Or- Thogonal Spline Collocation
| Matrix decomposition algorithms employing fast Fourier transforms were developed recently by the authors to solve the systems of linear algebraic equations that arise when piecewise Hermite bicubic orthogonal spline collocation (OSC) is applied to certain separable elliptic boundary value problems on a rectangle. In this paper, these algorithms are interpreted as Fourier methods in analogy wi...
متن کامل